DeepSeek-R1은 순수 강화학습(RL)과 소량의 Cold-start 데이터를 결합한 다단계 학습 파이프라인을 통해, OpenAI o1 시리즈에 필적하는 수준의 추론 능력을 달성한 오픈소스 언어모델입니다. 671억 파라미터 규모의 MoE 아키텍처를 쓰고, 약 560만 달러 규모의 학습 비용을 들였다고 알려졌으며, 추론 성능과 가독성, 인간 선호와의 정렬(alignment)을 모두 고려한 점이 특징입니다.
DeepSeek-R1은 순수 강화학습과 소량의 고품질 SFT를 결합하여, 스스로 체계적인 추론 패턴과 CoT를 학습하도록 유도한 혁신적 접근입니다. 대규모 MoE 아키텍처의 계산 효율성과 Distillation 전략을 통해 경제성과 성능을 모두 잡았으며, 오픈소스 생태계에 유용한 참고 사례로 자리매김했습니다. 다만 데이터 큐레이션의 투명성 확보와 다국어 지원 강화, 특수업무 성능 보완이 향후 과제로 남아 있습니다.
TensorFlow Extended(TFX): 프로덕션 레벨의 E2E 기계학습 파이프라인 플랫폼 TensorFlow Extended(TFX)는 구글에서 자체 머신러닝 제품을 안정적으로…
AutoML-Zero: ‘zero’에서부터 스스로 진화하는 기계학습 알고리즘 기계학습 알고리즘 설계의 혁신, AutoML-Zero 단 몇 줄의 코드도…
TensorFlow Lite: 모바일 & IoT 디바이스를 위한 딥러닝 프레임워크 엣지 인텔리전스를 향한 경량화된 딥러닝 TensorFlow…
Graph Convolutional Networks(GCN) 개념 정리 최근 비정형 데이터의 대표격인 그래프(graph)를 처리하기 위한 딥러닝 기법으로 Graph…
Graph Neural Networks(그래프 뉴럴 네트워크) 기초 개념 정리 딥러닝은 이미지·음성·텍스트와 같은 격자(grid) 형태 데이터에서 뛰어난…
설명 가능한 인공지능(XAI): 투명성과 신뢰를 향한 혁신적 도전 21세기 들어 인공지능(AI)은 전 세계 산업과 일상생활…